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We calculate the entire distribution of the conductance P�G� of a one-dimensional disordered system—
quantum wire—subject to a time-dependent field. Our calculations are based on Floquet theory and a scaling
approach to localization. Effects of the applied ac field on the conductance statistics can be strong and in some
cases dramatic, as in the high-frequency regime where the conductance distribution shows a sharp cutoff. In
this frequency regime, the conductance is written as a product of a frequency-dependent term and a field-
independent term, the latter containing the information on the disorder in the wire. We thus use the solution of
the Mel’nikov equation for time-independent transport to calculate P�G� at any degree of disorder. At lower
frequencies, it is found that the conductance distribution and the correlations of the transmission Floquet modes
are described by a solution of the Dorokhov-Mello-Pereyra-Kumar equation with an effective number of
channels. In the regime of strong localization, induced by the disorder or the ac field, P�G� is a log-normal
distribution. Our theoretical results are verified numerically using a single-band Anderson Hamiltonian.
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I. INTRODUCTION

Quantum electronic transport in disordered structures has
been of fundamental and practical interest since seminal
ideas by Anderson and Mott.1 Recently, transport in driven
systems has received much attention since new phenomena
have been found and the application of a time-dependent
driving field opens more possibilities to control the transport
in an electronic device. For instance, it has been proposed
the possibility of manipulating the electronic transport
through molecular structures by applying an ac field.2–4

Disorder in a sample can be an unavoidable and unwanted
ingredient in transport experiments, however, it can also be
seen as an ingredient to be exploited in order to manipulate
the transport properties of a system. The disorder gives a
random character to the transport and a statistical analysis
naturally emerges. In the absence of ac fields, the statistics of
quantities such as the conductance has been widely studied.
At present, there is a good understanding of the effects of
disorder on the statistical properties of the conductance for
one- and quasi-one-dimensional systems within a noninter-
acting electron model. In fact, the distribution of conduc-
tances is known, within a scaling approach to localization, at
zero temperature and infinitesimally small applied voltage:5,6

for one- and quasi-one-dimensional systems the evolution of
the conductance distribution as a function of the length of the
sample is described by the Mel’nikov and Dorokhov-Mello-
Pereyra-Kumar �DMPK� equations, respectively. For finite
temperatures and bias voltages as well as higher dimensions,
some progress has been made on the description of the con-
ductance statistics.7

In contrast to the well-studied problem of electronic trans-
port in nondriven disordered systems and in spite of the pos-
sible interest for applications, remarkably little is known
about the statistical properties of transport quantities when a
time-dependent field is applied; effects of energy fluctuations

on the current statistics in short molecular wires has been
studied in Ref. 8, while effects of ac fields on the localization
length and the conductance distribution of a ring driven by a
time-dependent magnetic flux have been studied in Refs. 9
and 10, respectively.

In this work, we calculate the complete distribution of the
conductance of a disordered quantum wire subject to a time-
periodic driving field. We obtain the distribution from high to
low frequencies with different regimes of disorder strength
and localization. Our theoretical results are compared to
tight-binding numerical simulations.

II. TIGHT-BINDING MODEL AND FLOQUET-GREEN
THEORY

We start by describing briefly the model of our driven
quantum wire. The conductance is calculated adopting a Flo-
quet scattering approach to the electronic transport problem
generalizing the Landauer-Büttiker formulation to driven
systems.11,12

We might think of an experimental setup where a disor-
dered sample, attached by perfect leads to a reservoir of elec-
trons on each side, is subject to a laser beam with an angle of
incidence perpendicular to the wire and a polarization angle
parallel to the wire, Fig. 1. We assume that such a system is
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FIG. 1. Schematic view of a one-dimensional disordered system
of length L driven by a frequency-dependent force. The quantum
wire is connected to electron reservoirs �1 and �2.
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described by the following time-dependent Hamiltonian:

H�t� = Hw�t� + Hl + Hc. �1�

The wire Hamiltonian Hw�t� is time periodic: Hw�t�=Hw�t
+T�, where T=2� /�, � being the frequency of the applied
field. For each term in Eq. �1� we have

Hw�t� = −
�

4 �
j=1

N−1

��j��j + 1� + �j + 1��j�� + 2V cos��t��
j=1

N

�j�j�j� ,

�2�

where N is the total number of sites of the wire, � is the band
width of the nondriven system, and V is the field amplitude
�a factor of 2 is introduced by computational convenience�.
The Hamiltonian for the leads Hl is modeled as

Hl = �
k

�k�cLk
† cLk + cRk

† cRk� , �3�

where cL�R�k
† is the creation operator for an electron at the left

lead �right� with momentum k and the coupling lead-wire
Hamiltonian Hc is given by

Hc = �
k

V1kcLk
† c1 + VNkcRk

† cN + H.c. �4�

The coupling can be described by the spectral density:
�N�1��E�=2��k�VR�L�k�2��E−�k�. The driving field might
have an effect on the coupling leads wire, however, this situ-
ation can be mapped onto a Hamiltonian of the form given
by Eq. �1� by a gauge transformation.12 We use the wide-
band approximation where we assume that the coupling be-
tween leads and wire is energy independent. This treatment
is justified whenever the conduction bandwidth of the leads
is much larger than all other relevant energy scales in our
problem. We use it as we are interested in the effect of the
driving in the conductance distribution and not of the details
of the coupling to the leads. In this approximation the infor-
mation of the wire coupling can be introduced via two self-
energies at the first and last sites of the wire ��1 and �N�
transforming the wire Hamiltonian to a non-Hermitian
Hamiltonian. Under the above assumptions and within a
tight-binding approximation, the Hamiltonian associated to
our quantum wire can be written as

H�t� = −
�

4 �
j=1

N−1

��j��j + 1� + �j + 1��j�� + �
j=1

N

Ej�j��j�

+ 2V cos��t��
j=1

N

�j�j�j� + i�1�1��1� + i�N�N��N� ,

�5�

where Ej is the random on-site energy, distributed uniformly
in the interval �−W /2,W /2�. The form of the external time-
dependent field assumes a dipolar approximation for a mono-
chromatic field so the wavelength of the laser light must be
longer than the length of the wire. As the Hamiltonian is time
periodic, the Floquet theorem states that there is a set of
solutions �	�


,m�t��—Floquet states—to the equation

�H�t� − i�
d

dt
��	�


,m�t�� = �
,m�	�

,m�t�� , �6�

where �
,m=�
+m�� with m an integer number and
−�� /2�Re��
���� /2. The Green’s function G�E , t� , t��
satisfying 	IE−H�t��
G�E , t� , t��I= I�T�t�− t��, where I is the
identity operator and �T�t� is a T-periodic delta function, can
be written in terms of the Floquet states �	�


,0�t��. Thus the
Fourier components Gk�E� of G�E� can be written as

G�k��E� = �

,m

�	k+m

,0 ��	m


,0†
�

E − �
 − m��
. �7�

We define the dc conductance for an ac-driven quantum wire
as

G = lim
V→0

dĪ

dV
, �8�

where Ī is the current averaged over one period of the driving
field. Thus G is an experimentally accessible quantity which
can be written as a sum of the Floquet modes g�k��EF�

G = �
k=−



g�k��EF� , �9�

where

g�k��EF� =
1

2
	T1N

�k��EF� + TN1
�k��EF�
 �10�

with T1N
�k��E�=�1�N�G1N

�k��E��2 being the transmission for elec-
trons from the left to the right lead, similarly TN1

�k��E�
=�N�1�GN1

�k��E��2 for electrons from the right to the left. In the
static case, T1N

�k� =TN1
�k� for systems with time-reversal symme-

try, however, in the presence of time-dependent fields this is
not longer true.12 When both transmissions are not equal, a
current at zero voltage can be induced �pumped current�.
This pumped current appears as an offset at zero voltage in
the I-V characteristic of our system. The presence of a
pumped current does not modify our formulas, as we calcu-
late the slope of the I-V curve at zero voltage. In the systems
we considered the pumped current is very much reduced as
the length of the systems increases and is, in general, negli-
gible, in contrast to results by Kaiser et al. in Ref. 8, where
they study the current in shorter molecular wires �N=6�.

We are thus interested in the statistics of the conductance
G given by Eq. �9�. Our theoretical predictions are verified
numerically by sampling over different disorder realizations,
i.e., over different configurations of Ej in Eq. �5�. The nu-
merical simulations are performed according to Eqs. �7� and
�9�, where the Fourier components G�k� are calculated using
the method of matrix continued fractions.9,13,14 We assume
perfect lead-wire coupling ��1=�N=1� although different
coupling strengths can be implemented in our numerical
simulations and theoretical framework. The histograms
shown in all the figures of this work were obtained from
2000 different disorder realizations.
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III. RESULTS

A. High-frequency regime

We start with the simplest case which turns out to be the
high-frequency regime characterized by frequencies ��
� ��+W� /2. It is also convenient to begin with this regime
since it illustrates in a simple way the approach to our con-
ductance calculations along this work.

In the absence of disorder and for high frequencies it has
been shown that the conductance is proportional to the
square of the Bessel function J0�2VL /���.14 A key point is
that this frequency-dependent factor J0�2VL /��� remains
under the presence of disorder.9 Thus, for a disordered wire
we write the conductance G as the product

G = J0
2���g , �11�

where �=2VL /�� and g is the dimensionless conductance of
the disordered wire in the absence of the driving field. The
calculation of the distribution of G is now straightforward
since the conductance distribution for the static case p�g� is
given by the solution of the Mel’nikov equation, which is
given by6

p�g� =
1

�2�
�1

s
3/2e−s/4

g2 �
y0



dy
ye−y2/4s

�cosh y + 1 − 2/g
, �12�

where y0=arccosh�2 /g−1� and s=L / l, l being the mean free
path. s can be seen as a disorder parameter which can be
obtained from the disorder average: s= �−ln g�. In order to
calculate P�G� we just need to make the change of variable
g→G in Eq. �12�, using Eq. �11�. We can work with the
exact expression �12�, however, we provide an analytical ex-
pression, which can be obtained by the saddle-point method,
for P�G�

P�G� =
CG

G3/2
J0

3/2���
	J0

2��� − G
1/4
�acosh	J0���/�G


� exp�− �l/L�acosh2	J0���/�G
� , �13�

where CG is a normalization constant and the ratio L / l is
obtained from Eq. �11� as

L/l = 2 ln J0��� − �ln G� . �14�

We notice that the L / l is the only parameter in Eq. �13�
which can be extracted from the numerical experiments us-
ing Eq. �14�; in this sense, we have a free parameter theoret-
ical result. In Fig. 2 we compare Eq. �13� with the numerical
simulations for different values of disorder, frequencies, and
field amplitudes. A good agreement is seen in all cases. We
point out the sharp cutoff of the distributions, which is de-
termined by the frequency-dependent term J0��� in Eq. �11�.
This is a manifestation of the phenomenon of coherent de-
struction of tunneling or dynamical localization by the inter-
ference of multiple paths due to the rapid oscillations of the
external field.15,16 This strong effect on the statistics suggests
the possibility of controlling the conductance: by tuning
properly the applied field the conductance through the disor-
der sample can be completely switched off at a desired con-
ductance value. We finally remark that the complete conduc-

tance distribution is determined by the frequency-dependent
term J0��� and the disorder parameter L / l in Eq. �14�

B. Intermediate and low-frequency regimes

Let us consider first the strong localization regime �L
� l� where the analysis of the conductance statistics is par-
ticularly simple. As we shall see, when L becomes of the
same order of l the calculations of the distribution of the
conductance are more involved.

When we increase the disorder strength and/or choose the
field parameters �amplitude, frequency� such that the system
is strongly localized, we observe that the Floquet modes are
strongly correlated; we show two typical examples of this
behavior in the insets of Fig. 3, where we plot the distribu-
tion F��g� of difference between the first and second trans-
mission Floquet modes �g �we have divided this difference
between modes by �G� with the only purpose of measuring
�g in units of conductance average�. We observe that F��g�
is highly concentrated at small values of �g. We point out
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FIG. 2. Conductance distributions P	ln�G�
 for strength disorder
W=5, field parameters V=4 and �a� �=35 and �b� �=20. L / l
=4.95 and 5.20 for �a� and �b�, respectively. P�G� for strength dis-
order W=2 and field parameters V=4, �c� �=35 and �d� �=25.
L / l=0.8 and 0.83 for �c� and �d�, respectively. A good agreement
between theory �solid lines� and numerical simulations �histograms�
is seen.
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FIG. 3. Insets: distribution of �g= �g0−g1� / �G� for L=10,, W
=5, V=4, �=2, and �G�=6.7�10−5 �left�; and L=10, W=2, V=4,
�=2 with �G�=1.7�10−4 �right�. Main frames: P	ln�G�
 for the
same parameters of the insets. Solid lines are given by Eq. �15� with
�ln G�=−14.7 and �2�ln G�=15.5 �left� extracted from the numeri-
cal simulation. �ln G�=−11.7 and �2�ln G�=6 for the right panel.
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that in the localized regime G�1 and since G is the sum of
the Floquet modes, Eq. �9�, it is expected that each Floquet
mode is in the localized regime. On the other hand, we recall
that in the static case, the conductance distribution follows a
log-normal distribution. Thus, the distribution of the loga-
rithm of the total conductance is given by the convolution of
log-normal distributions, i.e., each of these distributions cor-
responds to a Floquet mode. The resulting distribution is
again a log-normal distribution. Therefore we write P�ln G�
as

P�ln G� = CG exp	− �ln G − �ln G��2/2�2�ln G�
 . �15�

In Fig. 3 �main frames� we show P�ln G� for two different
disorder strengths. The average and variance of ln G are ex-
tracted from the numerical data and substituted into Eq. �15�.
A good agreement between theory and numerics is seen.

Perhaps the most interesting case is when the system is
not strongly localized by the ac field and/or disorder. We go
further with our approach to the problem where the statistics
of the frequency-dependent conductance fluctuations are de-
rived from the statistical properties of the transport problem
of the static case. For instance, we have found that the Flo-
quet modes g�k� show similar correlations to the conductance
channels of the multichannel �static� case. For simplicity we
shall consider the case where two Floquet modes g�0� and g�1�

�g�−1� is also considered, statistically, it gives the same con-
tribution as g�1�� give the main contribution to G.17

We recall that the DMPK equation is derived for a disor-
dered wire whose length L is much larger than its width Ly
�Ly �L�, i.e., a quasi-one-dimensional system. Within this
limit the diffusion of electrons in the transverse direction can
be neglected, although several transverse modes or channels
might be open and contribute to the conductance. For an
energy of electrons E and for a given channel n, the longitu-
dinal energy En is given by En=E−en, where en=n� /Ly, n
being a positive integer. It is important to remark that within
the DMPK framework only longitudinal diffusion is consid-
ered and the information of the number of modes is given
through the energies of the finite number of open channels.
In our one-dimensional wire driven by an periodic ac field,
the eigenvalues of the Schrödinger equation are given by
�
,m=�
+m�w, an expression similar to the static case, how-
ever, m takes unrestricted values �positive and negative�
whereas the open channels n are finite in the static case. With
this argumentation we expect that the statistical properties of
the time-dependent problem can be described through the
known statistical properties of the static case for a quasi-one-
dimensional geometry. As we have mentioned above, we
consider the case where two Floquet modes give the major
contribution to the conductance. We shall thus use the
DMPK results for two open channels. Within the DMPK
framework, the joint distribution of the variables xn related to
the conductance gn by xn=arccosh�1 /gn, where n labels the
channels �n=1,2�, is given by18

p�x1,x2� = exp	u�x1,x2� + V�x1� + V�x2�
 , �16�

where u�x1 ,x2�=ln	�sinh2 x1−sinh2 x2��x1
2−x2

2�2
1/2, V�xn�
=−3xn

2 /2s+ln�xn
2 sinh 2xn�1/2. Equation �16� is an approxima-

tion to the solution of the DMPK equation and it is useful
from strong to weak localized regimes.19

As we have discussed above, when the field is applied, the
Floquet modes follows a statistics given by Eq. �16�; in order
to illustrate this fact we calculate numerically the distribution
of the Floquet modes difference d=g�0�− 	g�+1�+g�−1�
, F�d�,
and compare to the theoretical distribution calculated from
Eq. �16�. The disorder parameter s�=L / l� in Eq. �16� is fixed
by fitting the average �d� to its corresponding numerical re-
sult. In the insets of Fig. 4, F�d� is plotted for two different
frequency values. As we can see the trends of the numerical
histograms are well described by the theoretical F�d� �solid
line�. These results for F�d� give us confidence in using the
solution of the DMPK equation, Eq. �16�. We then calculate
G assuming that it can be expressed as the product of a
frequency-dependent part, a, and a static contribution, g: G
=ag, i.e., the frequency-dependent term works as a rescaling
factor to the static conductance, in a similar manner to J0���
in the high-frequency regime studied previously. This factor
is estimated as the ratio a= �G� / �g�, where �g� is the conduc-
tance average when the ac field is switched off. Thus, the
distribution P�G� is given by

P�G� = ��	G/a − �1/cosh2 x1 + 1/cosh2 x2�
� , �17�

where � · � denotes average performed accordingly to Eq.
�16�. In Fig. 4 �main frames� we compare the theoretical
distributions �solid line� as given by Eq. �17� and the numeri-
cal results �histograms� for two different frequencies: a good
agreement is seen in both cases. For distinguishing details of
the distributions, we plot P�ln G� instead of P�G�. We also
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FIG. 4. �Color online� Main frames: conductance distributions
for L=10, W=2, V=1.0, �=4, a=0.003 �top� and �=5, a=0.068
�bottom�. The solid line is the analytic result with s=1.5 �top� and
s=1.35 �bottom�. The histograms in broken lines correspond to the
numerical results when the field is switched off. Insets: distribution
of d=g�0�− 	g�1�+g�−1�
 for the same parameters of the main frames;
theory �solid lines� and numerical calculations �histograms� show a
good agreement.
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plot P�ln G� for the static case �histograms in broken line� in
order to remark the strong effect of the ac field. Notice the
sharp decay of the distributions, although it is not as strong
as the high-frequency regime. The distributions are also
shifted from the origin due to renormalization value of the
conductance a in Eq. �17�. The value of a depends on some
complex interference pattern and as the results in Fig. 4
show, it can vary widely with a small variation in the param-
eters of the model.

C. Summary and conclusions

The statistical properties of the quantum transport in
driven disordered systems by ac fields are not well known.
Here we have studied the effects of an applied ac field on the
conductance distribution under different conditions by vary-
ing the disorder strength and field parameters. The statistical
properties of the frequency-dependent problem, in particular,
the conductance distribution, are obtained from known sta-

tistical properties of the transport in the static case. We have
found of special interest in the regime of high frequencies
where the conductance distribution shows a sharp cutoff,
which suggests the possibility of switching applications by
tuning the ac field, although, other aspects such as heating or
electrons interactions, which we neglect, might be relevant to
an accurate description of an experimental realization. This
cutoff is a manifestation of dynamical localization or coher-
ent destruction of tunneling due to multiple interference. Co-
herent destruction in time-periodic potentials has been seen
in cold atoms and semiconductor supperlattices.20 It should
be of interest to observe this effect in quantum transport
experiments.
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